Learning and Teaching Engineering ACM Compute, 2018

Pankaj Jalote

INDRAPRASTHA INSTITUTE of INFORMATION TECHNOLOGY DELHI

This Seminar

- Learning what is it
- Teaching what we mean by it
- Effective teaching and learning
- Audience students/learners and educators
- One message for each

An Educational Program

- An educational program (Btech, Mtech) has a structure
 - Ideally the program should have some goals in terms of what attributes the graduates should possess
 - The overall curriculum has a network of courses organized in some order to develop those attributes
 - Each course is taught by some instructor(s) and contributes towards the program goals
- Program/curriculum design itself is a complicated task – often not derived from goals, and often no clarity on how courses contribute towards the goal
- Will focus on teaching and learning in a course

What is Learning

- "A relatively permanent change in knowledge that occurs as a result of experience"
- Learning is a *process* that leads to change in knowledge....
- Knowledge what is stored in long term memory, which is relatively permanent (and not "short term" or "working" memory)
 - Declarative knowledge: about facts, what is true/false, propositions
 - Procedural knowledge: skills and rules, how to do things
 - Motor procedures: driving a car, playing tennis, typing,...
 - Mental procedures: solving equations, etc.
- From "Learning to Learn" by Wirth and Perkins; How students Learn by John Kihlstrom

Learning

- Each course should deliver some learning, i.e. a permanent change in knowledge (declarative and procedural)
- In most engineering / CS courses learning from a course for students is generally around:
 - Understanding of some concepts, phenomenon, system, connections, ... (declarative K)
 - Develoop skills for doing something design, test, analyse, quantitative methods for X, compare, write, critique,... (procedural K)

Learning – How Students Develop Understanding

- Knowledge is memory of individual pieces of K about concepts (procedures, facts, etc), and a network of connections between them
 - Body of knowledge the number of nodes
 - Richness/depth of Knowledge the number and nature of connections
- Not only "knowledge base" of concepts, facts, procedures, but also connections between them
- Novice and experts knowledge organization differs
 - In the vastness of knowledge network
 - In the degree to which knowledge is connected
 - How meaningful are those connections

Learning – How Students Develop Skills

- Developing skills to do (complex) tasks require
 - Development of component skills, i.e. student is comfortable in doing the sub-tasks comfortably
 - Practice in integrating them effectively
- If students are weak in critical component skills overall tasks suffer
 - Students must be asked to practice component skills in isolation before being asked to integrate them in larger tasks
 - Even small amounts of practice on developing components skills can vastly improve performance in the overall task
 - E.g. in a advanced programming course, we introduce a new platform, new language, and concepts; few exercises to train on platform, programming language help learn better
- Integrating component skills is demanding
 - Cognitive load can be high (more if students may not fluent in component tasks)
 - Suitable exercises for integration are needed

Constructivist View on Learning

- Constructivist theories are widely accepted now
 - Learning is a constructive process
 - Learner builds an internal (and personal) representation of knowledge based on experience
 - The representations keep evolving based on experience
- Different from the model that student's mind is a vessel in which we put information / knowledge
- Some consequences of this
 - Control over learning is therefore on the student
 - No short cut to learning effort and active engagement is the only way
 - Teacher's role is to help a student learn i.e. not "teach" but "facilitate learning"

Teaching a Course

- Instructor has to facilitate learning during his/her "teaching"
- Instruments generally available
 - Give about 40 lectures, each of about 50 mts (structure of lecture not fixed)
 - Give assignments/labs to practice/learn concepts covered in lectures
 - Give projects for deeper understanding and learning team work
 - Give tests/exams to assess (and help) learning
 - Create learning environments
- (Not discussing other forms of teaching e.g. mentoring, guiding,...)

Teaching and Learning

- Goal of teaching by teachers is learning by students
- There is no teaching without learning

Cartoon from "Learning to Learn", Wirth and Perkins

Teaching a Course

- Need knowledge of the subject matter
 - If instructor does not have strong knowledge, must build it – no work around this
 - In India subject matter is often main bottleneck, hence that is the focus of most QIP programs
- Even with subject understanding, need to teach effectively to facilitate learning
 - Teaching may not be effective even with SME
- This talk assumes subject knowledge
- Main task of instructor design all aspects of the course, and deliver it

Subject Matter Expertise (SME) and Effective Teaching (ET) Practices

Efforts Globally on Effective Teaching

- Many universities have T&L centres to help faculty
 - Eg. Wiki page lists more than 50 in US alone
- Even top research univs with best faculty have such centres
 - CMU: The Eberly Center for Teaching Excellence and Educational Innovation
 - Cornell: Center for Teaching Excellence
 - MIT: Teaching and Learning Laboratory
 - Berkeley: Center for Teaching and Learning
 - Purdue: Center for Instructional Excellence
 - GaTech: Center for the Enhancement of Teaching & Learning
 - UK: Many have been established
- In India the focus of most efforts is around QIP which is on subject matter
 - Where subject matter expertise is not there, this is suitable
 - Institutions where subject matter expertise exists can benefit from engaging more in T&L

Common Approach to Course Design

- List of topics approach most common and widespread across the world
 - Designer identifies a list of topics considered "important" for the course to be covered
 - Focus is on what to include/exclude, so the list can be "covered" in 14/15 weeks
 - Lecturer then prepares lectures and delivers them as per the list
 - Tests are designed on the list of topics
 - Design is easy, teaching/lecturing is easy (both can be done from a text)
- This is teaching focused
 - Actually lecturing focused not engaging/active
 - Limited value in learning (knowledge and skill development)

Teaching – Main Elements of Course Design

- Learning goals (outcomes) of the course
- Teaching and learning activities
 - In the class
 - Outside the class
- Assessment and feedback
- Weakness in any leads to reduced learning

Integrated Course Design

Learning Goals

- Learning goals what the student has learned at the end of the course
 - It is the post condition on the state of students mind
 - (Pre-condition is on knowledge at the start of the course)
- Learning goals are a few for a course, and can be stated as a few points, each starting with "at the end of the course, the student shall..."
 - Goals have to be reasonable they can be achieved (given the pre-condition, constraints), are not too easy, require the expected effort, can be assessed
 - Goals are in line with the overall program objectives, and provide the learning the courses that depend on it require
- Bloom's taxanomy helps in specifying course outcomes in terms of learning goals for students

Bloom's Taxonomy (figure from Vanderbilt.edu)

Bloom's Taxonomy

Intro to Programming – Goals 1

- This course provides students with an entry-level foundation in computer programming
- The goals of the course are to develop the programming ability in students, and to improve their proficiency in applying the computing fundamentals to their field of study
- Topics include overview of high level languages,...

- Teaching centric view "course provides", "to develop", "topics include"
- With learning focus, we need to make statements on learner's knowledge/ability at the end of the course

Intro to Programming – Goals 2

- [At the end of the course the student will:]
- Be fluent in the use of procedural statements assignments, conditional statements, loops, method calls — and arrays.
- Be able to design, code, and test small Python programs that meet requirements expressed in English
- Understand the concepts of object-oriented programming as used in Python: classes, subclasses, properties,...
- Have knowledge of basic searching and sorting, and basic vector computation

Teaching (& Learning) Activities

- This is where we spend the most our time preparing lectures, tutorials, assignments, thinking of examples, case studies, roleplays...
- Teaching must be consistent with goals must lead to students achieving learning goals
 - If teaching (including all activities) not consistent with goals, goals unlikely to be met
 - E.g: Giving long lectures (students "receive" info); have tests, midsem, end-sem for deciding grades: limited in what learning it can deliver
- A good teaching plan will
 - Identify important concepts for the course, arrange them in weekwise sequence
 - Identify nature of in-class T&L activities lectures, discussions, problem solving, case studies,...
 - Identify out-of-class learning activities for students assignments, labs, problems, projects, ... (most important for learning)
 - Provide feedback: Just asking students to do is not sufficient must provide prompt feedback for learning

Teaching Activities to Promote Learning

- Lecturing with active elements
 - Lecturing itself more suitable for factual knowledge, lower levels
 - Is more effective for higher levels when made more active by short in-class interjections or exercises (discuss in next session)
- Doing experiences
 - Solving problems (in class, tutorial, outside class)
 - Doing labs/experiments
 - Doing projects designing, building, writing a report/summary,...

• ...

- Observing experiences
 - Instructor solving a problem (in lecture, tutorial)
 - Showing a simulation on how something works (in lecture/tut)
 - Observe a plant/machine in operation (lab, visit,...)
 - ...
- Reflection (thinking / meaning-making)
 - Summarize, explain (in class, to myself, in a presentation/rept)
 - Explain how is it connected to other/prior knowledge
 - How is it related to the context, my life/work...
 - These can be done alone or with others e.g. dialog, discussion, explaining to others,... can help meaning-making

Teaching Activities - Plan

Week/L ecture	Торіс	In-Class	Outside class tasks
n	Conditional statements	Lecture, with some programming demo	Ask students to write 2 programs using conditionals and nested cond
	Tragedy of the commons	Flipped class room – brief quiz on the reading material given earlier, followed by discussion and problem solving	Students reads the paper / note. Ask students to write a small essay on a contemporary issue where this plays out
	Memory hierarchy	Lecture; examples of mem structure in today's PC; some photos and videos	Assignment to solve some memory hierarchy problems – impact of levels and size ²³

Assessment

- Assessment has two main objectives in a course
 - Support students' learning
 - For assigning a grade about the students' learning
- Assessment necessarily implies
 - Some student output which is assessed
 - Giving feedback essential for learning
- Goals which are not assessed satisfactorily are not likely to be achieved by students
- Assessment is an integral part of "teaching", if objective of teaching is learning
- Frequent assessment with proper feedback is one of the most effective tools for learning – much research to support this

Assessment and Feedback

- Assessment has to be aligned to goals students will finally align their learning to assessment
- E.g. Let us take the Intro to Programming Course
 - Say has a goals "able to design, code, test, small programs", as well as regular on "understand x, y, z"
 - Grade largely based on final exam
 - Faculty gives good lectures, gives good assignments also (but with no weight)
- Q: Will this deliver the post condition
 - Probably no as students will finally work towards the exam that will give them the grade/score
 - If a student learns well (how to program) may get a poor grade
 - That is why in most good institutes, assignments, projects, etc are given weight for final grading
 - [That is why skill development is almost impossible in the affiliating mode]
- If assessment not consistent with goals, goals are not likely to be achieved
 - Common occurrence exams only on simple concepts (gradeability)

Assessment Instruments

- Anything that a student does which we evaluate and give feedback (incl by marks) is assessment
 - Assignments
 - Presentations
 - Projects
 - Viva-voce
 - Term papers, reports
 - Quizes, tests, exams,...
- Assessment should have learning value

Designing Assessment Instruments

- Together the assessment plan should be consistent with the learning goals
 - They should directly support learning goals
 - So, if a goal is "understand", we should have some assessment to check the level of understanding
 - If a goal is "can analyse" we should have some assessment to check the analysis capability
- Assessment need to be consistent with teaching also
 - Fairness: Student should be assessed only what has been "taught" in the course
 - If much is "taught" but assessment is on too little, learning suffers

Summary: Message to Students

- Learning permanent change in knowledge (decl., procedural) as a result of doing a course
 - Learning happens by students it is not something done to the student by the instructor
- Learning is your responsibility instructor's is to facilitate this learning by you
- No learning without effort and active engagement
- At the end of course ask yourself what you have learned (have you satisfied the learning goals)
- Demand learning from your instructor/college not easy exams/grades, or less work

Summary: Message to Instructors

- Goal of teaching by us is learning by students
 - Learning: permanent change in K due to the course
- Teaching is far more challenging and interesting, when learning (rather than delivering) is the goal
- Ensure that the three dimensions are designed and delivered properly
 - Learning goals,
 - Ttaching (and learning) activities both inside and outside the class
 - Assessment (using various instruments)
- Proof of "teaching" is in "students learning"